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Abstract
How to identify the drivers of population connectivity remains a fundamental ques-
tion in ecology and evolution. Answering this question can be challenging in aquatic 
environments where dynamic lake and ocean currents coupled with high levels of 
dispersal and gene flow can decrease the utility of modern population genetic tools. 
To address this challenge, we used RAD- Seq to genotype 959 yellow perch (Perca 
flavescens), a species with an ~40- day pelagic larval duration (PLD), collected from 20 
sites circumscribing Lake Michigan. We also developed a novel, integrative approach 
that couples detailed biophysical models with eco- genetic agent- based models to 
generate “predictive” values of genetic differentiation. By comparing predictive and 
empirical values of genetic differentiation, we estimated the relative contributions 
for known drivers of population connectivity (e.g., currents, behavior, PLD). For the 
main basin populations (i.e., the largest contiguous portion of the lake), we found that 
high gene flow led to low overall levels of genetic differentiation among populations 
(FST = 0.003). By far the best predictors of genetic differentiation were connectivity 
matrices that were derived from periods of time when there were strong and highly 
dispersive currents. Thus, these highly dispersive currents are driving the patterns of 
population connectivity in the main basin. We also found that populations from the 
northern and southern main basin are slightly divergent from one another, while those 
from Green Bay and the main basin are highly divergent (FST = 0.11). By integrating 
biophysical and eco- genetic models with genome- wide data, we illustrate that the 
drivers of population connectivity can be identified in high gene flow systems.
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1  |  INTRODUC TION

Identifying the spatial and temporal boundaries of freshwater and 
marine populations is critical for effective fisheries management and 
conservation (Begg et al., 1999; Carvalho & Hauser, 1995; Hixon 
et al., 2002). However, the delineation of aquatic populations can be 
challenging because many species are difficult to observe directly in 
their aquatic environments (Hedgecock et al., 2007). Furthermore, 
many fish and invertebrate populations are often connected by 
dispersal that occurs during a relatively cryptic pelagic larval stage 
throughout which most larvae are minuscule (~1- 5 mm) and are 
nearly transparent, making them difficult to observe directly. This 
pelagic larval stage is ubiquitous; many freshwater fishes that inhabit 
large lakes and over 95% of all marine fishes have a pelagic larval 
stage as part of their life histories (Nelson et al., 2016). Being pe-
lagic and with limited swimming ability, larvae can be transported 
on currents to locations that are hundreds of kilometers away from 
where they were spawned (Christie, Johnson, et al., 2010, Christie, 
Tissot, et al., 2010; Cowen et al., 2006; Williamson et al., 2016). 
On the contrary, behavioral adaptations, homing mechanisms, and 
a complex interplay of biophysical processes (including currents) 
can result in individuals returning to the same site from where they 
were spawned (Almany et al., 2007; Christie, Johnson, et al., 2010, 
Christie, Tissot, et al., 2010; D'Aloia et al., 2015). Thus, identifying 
the role that currents play in connecting aquatic populations remains 
central to the effective conservation and management of aquatic 
ecosystems (Burgess et al., 2014; Liggins et al., 2019).

Both theoretical and empirical studies have demonstrated the 
importance of currents in defining population connectivity in aquatic 
systems (Cowen et al., 2007; Cowen & Sponaugle, 2009; Pineda 
et al., 2007; Selkoe et al., 2010; Treml et al., 2008). A smaller, but 
still substantial, number of studies have identified relationships be-
tween oceanic currents (including biophysical models parameterized 
by current data) and genetic differentiation (Galindo et al., 2006; 
Krueck et al., 2020; Legrand et al., 2022; Selkoe et al., 2016; Timm 
et al., 2020; White et al., 2010; Xuereb et al., 2018; reviewed in 
Jahnke & Jonsson, 2022). However, most of these studies have 
relied on current patterns from single points in time or that were 
averaged or integrated across weeks, months, and years (but see 
Krueck et al., 2020). Identifying the attributes and characteristics of 
currents that play a large role in defining population connectivity is 
critical for: (1) determining which currents to use for parameterizing 
connectivity matrices in theoretical or demographic models of pop-
ulation connectivity, (2) understanding the ecological (e.g., disper-
sal) and evolutionary (e.g., gene flow) linkages among populations 
in space and time, and (3) understanding patterns of genetic differ-
entiation in aquatic systems. With respect to this last point, if dy-
namic and variable currents play a large role in determining patterns 
of genetic differentiation in aquatic systems, then this result could 
also help explain the “chaotic genetic patchiness” often described 
in marine systems. Chaotic genetic patchiness is commonly defined 
as unexpected patterns of genetic differentiation that are observed 
over small spatial scales and are not stable in time (sensu Broquet 

et al., 2013; Johnson & Black, 1982). Diverse and multifaceted driv-
ers of chaotic genetic patchiness have been proposed, including ge-
netic drift, high variance in reproductive success, and kinship (Iacchei 
et al., 2013). However, one relatively simple explanation for these 
patterns is that currents that connect local populations are highly 
dynamic and that currents from limited time periods are responsible 
for most of the dispersal among populations in a given year.

There are several challenges with identifying which currents 
serve as the primary drivers of population connectivity. First, high- 
resolution oceanographic data and coupled biophysical models are 
required from numerous time points. Thus, high- quality oceano-
graphic data are requisite. Second, genetic differentiation is often 
used as a proxy for population connectivity, yet contemporary evo-
lutionary processes (e.g., genetic drift) and past evolutionary legacies 
(e.g., signals of bygone selection) can confound genetic estimates of 
population connectivity (Waples, 1998; Waples & Gaggiotti, 2006; 
Whitlock & Mccauley, 1999). Third, there is no standardized ap-
proach for correlating genetic estimates of population connectivity 
with oceanographic- based estimates of population connectivity (but 
see Krueck et al., 2020; White et al., 2010). One potential solution 
to this last challenge is to create species and system- specific eco- 
genetic agent- based models (Dunlop et al., 2009) that can use con-
nectivity matrices derived from oceanographic biophysical models 
as input and return pairwise genetic distance matrices as output 
(e.g., Krueck et al., 2020). With this approach, empirically derived 
estimates of genetic differentiation obtained from genotyping in-
dividuals from multiple sites (e.g., FST) can be compared with eco- 
genetic model- derived estimates of genetic differentiation derived 
from spatially and temporally relevant oceanographic data. Here, 
we use this integrative approach across a 500 km latitudinal gradi-
ent to examine patterns of population connectivity in an ecologi-
cally and economically important fish species found throughout the 
Laurentian Great Lakes (hereafter Great Lakes).

In many ways, the Great Lakes have abiotic and biotic condi-
tions that mirror temperate marine environments. High variability 
in nearshore currents, water temperature, and juvenile recruit-
ment (Pritt et al., 2014) are some of the characteristics shared be-
tween these systems. Additionally, many Great Lakes fishes and 
invertebrates have a pelagic larval duration on the order of 30 to 
40 days, high fecundity, high larval and juvenile mortality rates, 
and the potential for large population sizes— all characteristics 
shared with many marine species (Brazo et al., 1975; Forney, 1971; 
Ludsin et al., 2014; Pritt et al., 2014). Thus, insights gained from 
studies in the Great Lakes may be applicable to marine systems 
and vice versa. In this study, we focused on Lake Michigan yel-
low perch (Perca flavescens), an ecologically and economically im-
portant fish with an approximately 40- day pelagic larval duration 
(Dettmers et al., 2005; Whiteside et al., 1985). Lake Michigan 
spans a latitudinal gradient of nearly 500 km from north to south 
and has two large embayments, Green Bay and Grand Traverse 
Bay. While circulation patterns may vary substantially on an in-
terannual basis, some general patterns are manifest. For example, 
during summer months, cyclonic gyres often form in the southern 
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    |  3SCHRAIDT et al.

portion of the basin and along- shore currents from south to north 
dominate along the nearshore eastern portion of the lake (Beletsky 
et al., 2007; Höök et al., 2006). In the middle portion of the lake, 
the current patterns are often complex, but sometimes produce 
anticyclonic gyres that could act as barriers between southern 
and northern locations. Because substantial numbers of yellow 
perch larvae have been found in the middle of the lake (Dettmers 
et al., 2005), it is possible that these gyres could connect loca-
tions on the eastern and western sides of the lake. In the north-
ern portion of the lake, the currents typically flow at much slower 
speeds than in the southern portion of the lake and the complex 
bathymetry and embayments may support comparatively isolated 
aggregations of yellow perch.

Previous genetics work has revealed that Great Lakes yellow 
perch have a shared evolutionary history (i.e., the Great Lakes 
may have been only colonized once). In fact, most yellow perch 
populations throughout the Great Lakes are dominated by a single 
mtDNA haplotype (Sepulveda- Villet et al., 2009). However, nu-
clear loci illustrate that there is a clear separation of yellow perch 
populations among each of the Great Lakes (Sepulveda- Villet & 
Stepien, 2012). Furthermore, the population connectivity of yel-
low perch within Lake Erie, which has been more extensively stud-
ied, demonstrates fine- scale population genetic structure (Fraker 
et al., 2015; Sepulveda- Villet & Stepien, 2011) and there is no a 
priori reason to suspect that the patterns of population connec-
tivity would be any less complex in Lake Michigan. One canonical 
study examined five sites in Lake Michigan and found substan-
tial genetic differences between Green Bay and Lake Michigan 
and that sites in southern Lake Michigan were genetically similar 
to one another (Miller, 2003). Nevertheless, fully characterizing 
the genetic structure of Lake Michigan yellow perch, as well as 
identifying the drivers of population connectivity in this system, 
has important implications for the successful conservation and 
management of species in this region and beyond (e.g., stock iden-
tification, delineation of management units, and identifying pre-
dictors of recruitment).

In this study, we sampled yellow perch from 20 sites circum-
scribing Lake Michigan. For every individual, we obtained geno-
types at 9302 single- nucleotide polymorphisms (SNPs) distributed 
throughout the yellow perch genome (Feron et al., 2020) using 
restriction site- associated DNA sequencing (RAD- Seq). We also 
used a Lagrangian particle tracking biophysical model to obtain 
high- quality current- derived connectivity matrices reflecting 
connections among 40 regions from 36 release dates spanning 
6 years. Using data from both our empirical RAD- Seq dataset and 
our integrated biophysical, eco- genetic model we asked three 
questions: (1) What is the population structure of yellow perch 
throughout the main basin of Lake Michigan and Green Bay? (2) 
How much does variation in the pelagic larval duration, vertical 
behavior of larvae, local population sizes, and number of gener-
ations of gene flow explain the empirically derived estimates of 
genetic differentiation? and (3) How does spatial and temporal 
variation in currents (e.g., the release date used in the biophysical 

mode l) explain the empirically derived estimates of genetic differ-
entiation? We find that there is substantial population structure 
between Green Bay and main basin perch populations and that 
population connectivity within the main basin is best explained by 
highly dispersive currents.

2  |  MATERIAL S AND METHODS

2.1  |  Study species and sample collection

Yellow perch remain one of the most ecologically and economi-
cally important species throughout the Great Lakes. They are an 
abundant nearshore fish species, serve as important predators 
of small fishes and invertebrates, and are themselves important 
prey for larger fishes (Evans, 1986). Historically, yellow perch sup-
ported commercially important fisheries throughout the Great 
Lakes region; in Lake Michigan alone, peak annual commercial 
harvest would now represent close to $16 million (US$) in dock-
side value and much more at retail. However, Lake Michigan yel-
low perch populations began declining during the late 1980s and 
early 1990s which led to closures of most yellow perch commer-
cial fisheries. Relevant life history characteristics for yellow perch 
populations include: a pelagic larval duration on the order of 30 
to 40 days (Dettmers et al., 2005; Whiteside et al., 1985), high fe-
cundity (~ 10,000 to 150,000 eggs/female), and type III survivor-
ship (i.e., high mortality during early life stages; Brazo et al., 1975; 
Forney, 1971). Yellow perch typically spawn during late spring 
to early summer when currents within Lake Michigan are often 
at their weakest (Beletsky et al., 1999). Adult yellow perch have 
modest home ranges and mark– recapture studies have demon-
strated that most adult yellow perch and their congener, Eurasian 
perch (Perca fluviatilis), have high site fidelity, particularly with re-
spect to spawning grounds (Bergek & Björklund, 2009; Böhling & 
Lehtonen, 1984; Glover et al., 2008; Schneeberger, 2000). Thus, 
the predominant form of population connectivity for yellow perch 
likely occurs during the pelagic larval stage. Similar to many marine 
fishes, yellow perch larvae may have some control over their dis-
persal trajectories simply by varying their vertical position within 
the water column (Graeb et al., 2004; Leis, 2006). As the larvae 
develop, they may also become better at swimming, such that a 
combination of active and passive dispersal mechanisms may ul-
timately dictate where individual yellow perch are located when 
they transition to a demersal life stage. Because yellow perch have 
many ecological and life history characteristics in common with 
marine fishes, other Great Lakes fishes, and other commercially 
important fishes (Ludsin et al., 2014; Pritt et al., 2014), they rep-
resent an excellent model system for studying patterns of popula-
tion connectivity in aquatic systems.

Yellow perch were collected from 20 sites circumscribing Lake 
Michigan and Green Bay in 2018 and 2019 (Figure 1a; Table 1). In 
2018, adults (i.e., individuals >100 mm in total length; see Table S1 for 
size data) were sampled using 12- h overnight multimesh gill net sets. 
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4  |    SCHRAIDT et al.

Sampling during the 2018 season began in southern Lake Michigan 
in early March and continued through the end of July at the north-
ernmost sites to account for variation in regional spawning times. 
Young- of- year fish (i.e., juveniles) were sampled in September using 
beach seines. Individuals were classified as young- of- year based on 
size (<100 mm total length). Sampling in both 2018 and 2019 was 
supplemented with assistance from agency partnerships, specif-
ically the Michigan Department of Natural Resources, the Indiana 
Department of Natural Resources, the Wisconsin Department 
of Natural Resources, the Illinois Natural History Survey, and the 
Grand Traverse Band of Ottawa and Chippewa Indians, where sam-
pling methods consisted of bottom trawls, gill netting, and creel 
surveys. Small portions of fin tissue (~2 × 2 cm) were collected from 
every individual and stored in 95% nondenatured ethanol. A total 
of 1376 individuals were sampled over 2 years from which a sub-
set of 959 samples that maximized representation among collection 
sites were selected for genotyping (Tables 1 and S1). Tissues were 
stored at −20°C upon arrival at Purdue University and held until 
DNA extraction.

2.2  |  Molecular methods

DNA was isolated from fin tissue with Qiagen DNeasy® Blood & 
Tissue Kits. Following an overnight (~14- h) tissue digestion with 
Proteinase K incubated at 56°C, DNA was extracted in plates using 
standard kit protocols and eluted from the silica membrane with 
200uL Tris Low- EDTA buffer. Extractions were quantified using a 
Quant- it™ PicoGreen® dsDNA Assay (Invitrogen), and DNA was 
normalized to a quantity of 200 ng or approximately 20 ng/μL.

Libraries for restriction site- associated DNA (RAD) sequencing 
were prepared following the BestRAD protocol (Ali et al., 2016). 
Normalized DNA was digested with the restriction enzyme SbfI 
followed by ligation with indexed adaptors. Barcoded libraries 
were pooled into master libraries of 96 individuals and fragmented 
to ~300– 500 bp with 12 30s cycles in a Q500 sonicator (Qsonica). 
Fragmented DNA was bound to Dynabeads™ M- 280 Streptavidin 
magnetic beads (Invitrogen) and washed with buffer to remove 
nontarget fragments. Following purification with AMPure XP 
beads (Beckman Coulter), master libraries were passed in series 

F I G U R E  1  Sample collection sites and regional patterns of genetic differentiation. (a) A total of 959 yellow perch (Perca flavescens) were 
collected and genotyped from 20 sites, representing 26 collections (Table 1), circumscribing Lake Michigan. (b) Principal component analysis 
(PCA) for all genotyped individuals illustrates substantial genetic differences between Green Bay and main basin yellow perch. Also notice 
the larger spread of Green Bay individuals along axis 2, which suggests more variation among sites within Green Bay than sites within the 
main basin despite the much larger size of the main basin. (c) Results from STRUCTURE further illustrate the large genetic differences 
between Green Bay and main basin yellow perch where the proportion of Green Bay (red) or main basin (blue) ancestry is depicted for 
every individual as a single vertical line. Mean pairwise FST between Green Bay and main basin sites is equal to 0.11. The key to site name 
abbreviations is provided in Table 1.
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    |  5SCHRAIDT et al.

through the NEBNext® Ultra™ DNA Library Prep Kit for Illumina® 
at the End Prep step for (1) end repair and ligation of master li-
brary barcodes, (2) a 250- bp insert size selection, and (3) a 12- 
cycle PCR enrichment. Successful size selection and enrichment 
were confirmed with visualization of products on a 2% agarose 
E- Gel (Invitrogen). Products underwent a final AMPure XP puri-
fication clean- up followed by quantification with a Qubit® 2.0 
Fluorometer. A total of 10 master libraries, each containing 96 in-
dividually barcoded samples, were sent to Novogene (Sacramento, 
CA) for PE150 sequencing on one lane of the Illumina Novaseq S4 
platform.

Raw Illumina RAD sequence reads were processed using the 
STACKS v2.54 (Rochette et al., 2019) software pipeline. Reads 
were cleaned and demultiplexed by barcode using the STACKS 
subprogram process_radtags. Sequences were demultiplexed by 
barcode, filtered for Illumina quality score and enzyme cut- site, 
and trimmed to 140 base pairs to reduce tail- end sequencing errors 

(parameter flags = −- filter_illumina, −- bestrad, −t 140). The result-
ing filtered, individually assigned reads were aligned to the yellow 
perch reference genome (P. flavescens PFLA_1.0 assembly, GenBank 
accession GCA_004354835.1; Feron et al., 2020) with bowtie2 
(Langmead et al., 2019; Langmead & Salzberg, 2012) (parameter 
flag = −- very- sensitive). Single- nucleotide polymorphisms (SNPs) 
were called from reference- aligned paired- end reads with the 
STACKS subprogram gstacks (parameter flag = −- rm- unpaired reads), 
and individuals were genotyped at each identified SNP. The gstacks 
output files, which contain consensus sequences at each identified 
locus, as well as individual genotype data, were filtered through 
the STACKS subprogram “populations.” SNPs that were genotyped 
in less than 30% of individuals were discarded (parameter flag = −r 
0.3), and results were exported in variant call format (VCF). SNPs 
were then filtered using vcftools v0.1.9 (Danecek et al., 2011). Post- 
STACKS filtering largely followed the same workflow published in 
Gehri et al., 2021. Briefly, filtering consisted of (1) removing SNPs 

TA B L E  1  Sampling details for Lake Michigan yellow perch including collection site names, latitude, longitude, site name abbreviations 
(“Site ID”), region, year collected, age collected (yoy = “young of year”), and the number of individuals genotyped. A single individual from 
Algoma, Wisconsin was also genotyped but not used in any subsequent analyses (not shown). Locations are illustrated in Figure 1.

Site name Latitude Longitude Site ID Region
Year 
collected

Age 
collected

Number 
sequenced

Michigan City 41.72750 −86.94735 MICYO Main Basin 2018 Yoy 28

MIC19 Main Basin 2019 Adult 46

MIC18 Main Basin 2018 Adult 50

Saint Joseph 42.11914 −86.49644 STJ18 Main Basin 2018 Adult 50

South Haven 42.40596 −86.33752 SOH18 Main Basin 2018 Adult 18

South Chicago 41.74067 −87.53000 SCH18 Main Basin 2018 Adult 16

Chicago 41.88567 −87.61000 CHI18 Main Basin 2018 Adult 13

North Chicago 42.15350 −87.76000 NCH18 Main Basin 2018 Adult 15

Waukegan 42.38700 −87.78000 WAK18 Main Basin 2018 Adult 20

Grand Haven 43.05141 −86.29291 GRH19 Main Basin 2019 Adult 38

GRH18 Main Basin 2018 Adult 50

Ludington 43.95713 −86.47504 LUD18 Main Basin 2018 Adult 10

Milwaukee 42.99538 −87.80253 MIL19 Main Basin 2019 Adult 32

Suttons Bay 45.04650 −85.56199 SUT18 Main Basin 2018 Adult 32

Northport 45.12820 −85.55028 NPT18 Main Basin 2018 Adult 34

Charlevoix 45.32571 −85.26504 CHX19 Main Basin 2019 Adult 59

Cheboygan 45.73871 −84.62552 CHE18 Main Basin 2018 Adult 40

Naubinway 46.07465 −85.42233 NUB18 Main Basin 2018 Adult 72

Manistique 45.93287 −86.23245 MAN18 Main Basin 2018 Adult 15

Big Bay de Noc 45.78659 −86.59284 BDNYO Green Bay 2019 Yoy 41

BDN19 Green Bay 2019 Adult 40

Little Bay de Noc 45.87262 −87.00212 LBDYO Green Bay 2019 Yoy 41

LBD19 Green Bay 2019 Adult 40

Menominee 45.10461 −87.57281 MEN19 Green Bay 2019 Adult 49

South Green Bay 44.61706 −87.95805 SGB19 Green Bay 2019 Adult 50

SGB18 Green Bay 2018 Adult 60

Total = 959
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6  |    SCHRAIDT et al.

that were genotyped in fewer than 70% of individuals (Figure S1), 
(2) filtering out individuals with >70% missing loci, and (3) removing 
loci with a minor allele frequency (maf) of less than 0.01. We next 
used HDPlot (McKinney et al., 2017) to remove loci with a read ratio 
deviation greater than 5 and less than −5. A custom python script 
was then used to select SNPs with the highest allele frequency at 
each position. The resulting vcf file was converted to GENEPOP and 
STRUCTURE format using PGDSpider (Lischer & Excoffier, 2012).

2.3  |  Population genomics

Collection site summary statistics including observed heterozy-
gosity (HO) and expected heterozygosity (HE) were calculated in 
R 4.0.2 (R Core Team, 2021) using the package adegenet v.2.1.1 
(Jombart, 2008). Allelic richness (Ar) was calculated using the R 
package hierfstat v0.5.7 (Goudet, 2005). We used the R package 
HardyWeinberg (Graffelman, 2015) to test for deviations from 
Hardy– Weinberg Equilibrium using exact tests on each locus within 
each collection site. A Bonferroni correction based on the number 
of polymorphic loci within each collection site sample was used to 
identify loci out of equilibrium.

Cluster analyses were performed to identify population clusters 
and examine genetic similarity of individuals from all sites as well as 
separately within the main basin and Green Bay populations. The 
Bayesian clustering method implemented in STRUCTURE v2.3.4 
(Pritchard et al., 2000) was first used to determine population 
structure present among all sampled locations (Green Bay and the 
main basin combined). For STRUCTURE analyses with all samples, 
the optimal inferred cluster (K) was determined using the delta K 
method (Evanno et al., 2005). Runs consisted of an initial burn- in 
period of 50,000 Markov Chain Monte Carlo (MCMC) iterations fol-
lowed by 50,000 iterations for each inferred cluster. Analyses were 
performed with K = 1– 30 clusters and replicated five times for each 
value of K. Additional, runs investigating population structure were 
performed separately for both Green Bay and the main basin, re-
spectively. For the Green Bay and main basin STRUCTURE analyses, 
we employed admixture and correlated allele frequency models, as 
this approach is most appropriate when subtle population structure 
is expected (Falush et al., 2003; Hubisz et al., 2009). Analyses were 
performed for K = 1– 20 for the 19 main basin sites and for K = 1– 8 for 
the 7 Green Bay sites, representing the total number of collection 
sites plus one, and replicated five times for each inferred cluster. 
As above, all runs consisted of an initial burn- in period of 50,000 
MCMC iterations followed by 50,000 iterations for each inferred 
cluster. Due to the appearance of admixed individuals between the 
two regions, NewHybrids (Anderson, 2003) was also run to further 
investigate whether any individuals might be F1 hybrids between 
Green Bay and the main basin. Five replicate runs of NewHybrids 
were performed with an initial burn- in of 100,000 followed by 
1,000,000 MCMC iterations. Posterior probabilities of group mem-
bership to parental group 1, 2, or F1 hybrids were averaged for each 
individual.

Pairwise FST between populations and 95% confidence intervals 
(calculated via bootstrapping, n = 1000) were calculated in hierfstat 
v0.5.7 (Goudet, 2005). Pairwise FST values were output as a genetic 
distance matrix and exported for analysis in GenAlEx v6.5 (Peakall 
& Smouse, 2006), where principal coordinate analysis (PCoA) was 
performed to visualize genetic differentiation among populations. 
Principal components analysis (PCA) was used to further support 
the results of both STRUCTURE and PCoA for both the Green Bay 
and main basin populations. Allele frequencies were scaled using the 
scalegen function in adegenet, and PCAs were run using these scaled 
matrices with the base R function prcomp. For the STRUCTURE and 
PCA analyses, we used the LD. thin function in the R package gas-
ton 1.5.7 (Perdry & Dandine- Roulland, 2020) with a threshold of 0.1 
and max.dist of 500,000 to remove loci that were in linkage disequi-
librium. This procedure retained 5807 loci that resolved population 
structure marginally better than the full dataset. Using the Green 
Bay and main basin pairwise FST values, we also created isolation- by- 
distance plots where distances were calculated as the nearest along- 
shore distance between collection sites. We used a Mantel test in 
GenAlEx to test for a positive relationship between distance and FST.

2.4  |  Biophysical models

For the biophysical model, we used a Lagrangian particle tracking 
model previously developed to study the transport of larval cod 
(Churchill et al., 2011; Huret et al., 2007), where three- dimensional 
current velocities and turbulent diffusivity were output from the ap-
plication of the Finite Volume Community Ocean Model (FVCOM). 
A random walk scheme for spatially varying vertical diffusivity 
was used, including a vertical floating/sinking/swimming velocity 
(Gräwe, 2011; Rowe et al., 2016). Particles were designated to be 
either (1) neutrally buoyant or (2) have an upward vertical swim-
ming velocity of 0.0003 m/s. We chose to use an upward vertical 
swimming velocity because yellow perch larvae are more likely to be 
collected in the upper layers of Lake Michigan (Martin et al., 2011). 
The Lagrangian particle tracking simulations were forced by out-
put from FVCOM simulation of Lake Michigan- Huron (Anderson 
& Schwab, 2013) incorporating exchange currents in the Straits of 
Mackinac. Horizontal grid resolution varied with finer resolution 
nearshore and in regions with complex coastlines (e.g., 100 m in the 
Straits of Mackinac to 2.5 km in the center of the lakes), and each 
horizontal grid was discretized into 20 terrain- following (sigma) 
layers. Additional model details can be found in Supplementary 
Methods.

To generate connectivity matrices, the probability of transport 
from grid region i to grid region f was calculated as Nif /Ni, where Nif 
is the number of particles initiated in grid region i that were within 
grid region f at the end of the simulation, and Ni is the total number 
of particles that were initiated in grid region i (Figures S2 and S3). 
Based on the FVCOM and particle tracking models, connectivity 
matrices were developed for 40 grid regions for 6 years: 2014– 2019. 
The sensitivity of the connectivity matrices to model assumptions 

 17524571, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13567 by N

orthw
est Fisheries Science, W

iley O
nline L

ibrary on [26/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7SCHRAIDT et al.

was evaluated by considering scenarios of (1) vertical swimming be-
havior and (2) horizontal diffusion. Simple behavior scenarios were 
tested, including passive particle movement and upward swimming. 
Scenarios with vertical swimming velocity were implemented by ap-
plying a deterministic vertical velocity in the vertical random walk 
turbulence scheme (Rowe et al., 2016), representing the combined 
effects of turbulence and directed swimming. Particles were initiated 
at the nodes of the unstructured FVCOM grid, at locations <10 m 
deep (number of nodes = 2246), consistent with nearshore spawning 
of yellow perch. Horizontal resolution was 200– 600 m in nearshore 
areas where particles were initiated with 100 particles per node and 
uniformly distributed vertically through the water column. In sce-
narios with vertical swimming velocity set to zero, particles primar-
ily remained distributed through the epilimnion, but some particles 
dispersed into the metalimnion in longer simulations. We also con-
ducted scenarios with an upward swimming velocity (0.0003 m/s) 
sufficient to maintain particles within the epilimnion; this swimming 
speed was considerably less than the reported maximum horizontal 
swimming velocities of larval yellow perch of 0.03– 0.046 m/s (re-
viewed by Höök et al., 2006), but sufficient to keep particles within 
the epilimnion (see Supplementary Methods for details). We as-
signed a horizontal diffusion coefficient of 5.6 m2/s based on esti-
mates from Lake Michigan (Thupaki et al., 2013). Models were run 
for three estimates of pelagic larval duration (30, 40, and 50 days; 
the mean and 10 days on either side; Beletsky et al., 2007), two up-
ward swimming velocities (0 and 0.0003 m/s), 6 weekly release dates 
ranging from late May to early July (the peak estimated yellow perch 
spawning period; Starzynski & Lauer, 2015), and 6 years (2014– 2019) 
resulting in a total of 216 biophysical model simulations (Table 2).

2.5  |  Eco- genetic models

To determine the extent to which currents could explain the em-
pirically estimated genome- wide levels of genetic differentiation 

among main basin sites, we created a spatially explicit, forward- time 
agent- based model that simulates larval dispersal among popula-
tions and, importantly, is parameterized by the lake- wide biophysi-
cal connectivity matrices described above. The goal of this exercise 
was to find the connectivity matrix or set of connectivity matrices 
that best explain the empirical patterns of genetic differentiation 
among sample sites. We performed these analyses only for main 
basin sample sites (i.e., we excluded Green Bay) because the orders 
of magnitude higher FST between Green Bay sites and the rest of 
the lake made it challenging to identify the parameter values that 
best explained patterns of connectivity and gene flow among the 
main basin sample sites. The eco- genetic model was adapted from 
Christie et al. (2017) to incorporate our sample design (Figure 1) and 
yellow perch life history characteristics. The model was parameter-
ized with 40 sites (hereafter: “local populations”) from the 37 main 
basin grid regions to mimic the grid design employed by the biophys-
ical model (Figure 1a). Three of those 37 grid regions had two sample 
collection sites that were both included in the model (Figure S3) for 
a total of 40 main basin local populations included in the model. Grid 
regions that did not contain a collection site were still included in 
the model to accurately model gene flow across the entire lake in 
multiple years. Each local population in the model was character-
ized by an average of 600– 1200 individuals, resulting in an average 
metapopulation size of 36,000 perch. Every individual was randomly 
assigned a sex (male or female) and was characterized by 100 inde-
pendent (unlinked) single- nucleotide polymorphisms (SNPs). At the 
beginning of each model run, all multilocus genotypes were created 
in accordance with Hardy– Weinberg Equilibrium (HWE). After ini-
tializing populations, the model was characterized by the following 
steps: mortality, reproduction, larval dispersal, and recruitment. We 
assumed an average of 20% mortality per year, following estimates 
for both yellow perch and for many coastal marine species (Wilberg 
et al., 2005). This process created age- structured populations with 
overlapping generations and a mean generation time of 4.8 years. 
During the mortality step, individuals were randomly removed from 
throughout the metapopulation. Within each local population, mor-
tality was varied slightly each year using a random deviate from a 
normal distribution with a mean equal to the number of offspring 
needed for replacement and a standard deviation of 105. This pro-
cess increased fluctuations in local population sizes and mimics pop-
ulation dynamics of perch populations (Irwin et al., 2009; Figure S4).

Because many aquatic organisms are characterized by high 
variance in reproductive success (Hedgecock & Pudovkin, 2011), 
we varied the number of offspring produced by each pair (with 
most pairs producing no offspring surviving to recruitment in a 
given year) using a gamma distribution with a shape parameter of 
0.5 and a rate parameter of 0.1. Pairs were created by randomly 
pairing males and females within each local population without 
replacement. Offspring were created in strict accordance with 
Mendelian inheritance; at each locus, each offspring inherited one 
allele, chosen at random, from both parents. To simulate larval 
(i.e., offspring) dispersal among the 40 local populations, we used 
connectivity matrices from the FVCOM biophysical model (see 

TA B L E  2  Parameter values used in the biophysical model for 
Lake Michigan yellow perch.

Parameter Value

Years 2014, 2015, 2016, 2017, 2018, 
2019

Release month (and week) May(4), June(1), June(2), 
June(3), June(4), July(1)

Vertical velocity 0 m/s, 0.0003 m/s

Horizontal diffusivity 5.6 m2/s

Run duration (PLD) 30, 40, 50 days

Total number of simulations 216

Note: A total of 216 different model runs were conducted where all 
possible combinations of 6 years, 6 particle release weeks (spanning 
3 months), 2 vertical upward swimming velocities, and 3 run durations 
were examined. Run duration consisted of the time period from when 
the particles were first released to when the model was stopped and 
are thus analogous to varying the pelagic larval duration (PLD).
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8  |    SCHRAIDT et al.

section above). A total of 216 connectivity matrices were available 
(Table 2). For each model run, we first selected a single connec-
tivity matrix and applied the selected connectivity matrix to each 
local population in the model to determine the number of recruits 
originating from each of the 40 local populations. Specifically, we 
used a multinomial distribution specifying all 40 populations, the 
number of needed offspring for a local population to return to its 
local carrying capacity, and the connectivity matrix describing the 
probability of a recruit originating from each of i local populations. 
In practice, the multinomial distribution was implemented prior 
to reproduction so that we knew precisely how many offspring 
to create in each local population, which increased computational 
efficiency; however, the actual dispersal of individuals occurred 
after reproduction.

Because there is a fair amount of uncertainty associated with 
the demographic, life history, and dispersal characteristics of Lake 
Michigan yellow perch, we tested a total of 4536 combinations of 
parameter values (Table 3), with each unique set of parameters repli-
cated with 100 model runs. Thus, a grand total of 453,600 individual 
simulations were run on four high- performance computing nodes 
(256 cores, 1024 GB memory). Each set of parameters consisted of 
a combination of parameters specified by the biophysical or eco- 
genetic models (Table 3). Specifically, we selected one of three val-
ues for the number of years to run the eco- genetic model (50, 100, or 
200 years), one of three pelagic larval durations (30, 40, or 50 days), 
one of four estimates of local population sizes (600, 800, 1000, and 
1200), one of two upward swimming speeds (0 and 0.0003 m/s), and 
for date- specific current data, one of 6 years (2014– 2019), and one 
of 6 release weeks (the 4th week of May, the 1st through 4th week 
of June, and the 1st week of July) (Table 3), which correspond with 
known peaks of yellow perch spawning events in Lake Michigan 
(Starzynski & Lauer, 2015). We also wanted to test whether varying 
connectivity matrices within a single simulation would improve pre-
dictive ability. Thus, we also included model runs where the connec-
tivity matrix was replaced for each year of the eco- genetic model. 
Specifically, we: (1) randomly selected (with replacement) a connec-
tivity matrix from the first 3 release weeks across all 6 years (2014– 
2019) for every year in the eco- genetic model, (2) randomly selected 
a connectivity matrix from the last 3 release weeks across all 6 years 
(2014– 2019) for every year in the eco- genetic model, and (3) ran-
domly selected a connectivity matrix from all 6 release weeks across 
all 6 years (2014– 2019) for every year in the eco- genetic model (see 
sets 1– 3 in Table 3). The first two scenarios were tested because 
the spawning window for yellow perch may be earlier (Scenario 1) 
or later (Scenario 2) than the entire 1.5- month window, but not well 
characterized by a single release year. The last scenario (Scenario 
3) tests whether averaging across all release weeks and years is 
a better predictor of connectivity than a single release week and 
year. Lastly, we performed a similar set of analyses where for each 
combination of parameters we randomly selected the release weeks 
(identical to Scenarios 1– 3), but kept the year fixed (i.e., ran 1 year 
at a time). This procedure allowed us to test whether averaging con-
nectivity matrices within and over years provided better predictive 

value than connectivity matrices that were developed from specific 
currents from shorter time periods (Table 3).

At the end of each model run, we calculated pairwise genetic 
differentiation (unbiased FST; Weir & Cockerham, 1984) among all 
pairs of populations using all simulated individuals. These pairwise 
estimates were derived entirely from the eco- genetic model (here-
after: “predictive values”) and were compared with the empirical FST 
values derived from genotyping the field- collected samples (16 main 
basin adult collection sites; hereafter: “empirical values”). Thus, we 
obtained values of the exact same estimator calculated with two 
entirely independent approaches. Because the same estimator was 
used, a perfect fit between the predictive values and the empirical 
values would fall directly on a 1:1 line (i.e., y = x). Thus, to estimate 
the accuracy and precision of the predictive values we used simple 
linear regression and calculated the slope and correlation (measured 

TA B L E  3  Parameter values used in the eco- genetic agent- based 
model for Lake Michigan yellow perch, which was parameterized by 
connectivity matrices generated from a detailed biophysical model.

Parameter Value

Model years 50, 100, 200

Matrix years 2014, 2015, 2016, 2017, 2018, 
2019, 2014– 2019

Matrix release month (and 
week)

Individual: May(4), June(1), 
June(2), June(3), June(4), 
July(1)

Matrix release month (and 
week) sets

Set 1 = [May(4), June(1), June(2)]

Set 2 = [June(3), June(4), July (1)]

Set 3 = [May(4) –  July (1)]

Matrix vertical velocity 0 m/s, 0.0003 m/s

Matrix run duration (PLD) 30, 40, 50 days

Local populations 40

Local population sizes 600, 800, 1000, 1200

Annual mortality rate 0.2

Variance in reproductive 
success

Gamma (alpha = 0.5, beta = 0.1)

Metapopulation carrying 
capacity

40,000

Number of loci 100

Number of alleles per locus 2

Replicates 100

Total number of simulations 453,600

Note: Model years represent the number of years the eco- genetic model 
was run through all steps (i.e., reproduction, dispersal, mortality). Matrix 
rows represent the connectivity matrices used for determining dispersal 
among local populations in the eco- genetic model and correspond to 
the specific years, months, and weeks that particles were released 
in the biophysical model. Each of the 216 connectivity matrices was 
tested separately. We also tested specific sets of connectivity matrices 
where connectivity matrices were allowed to vary each year within the 
eco- genetic model (i.e., a connectivity matrix designated within each set 
was randomly selected with replacement each model year prior to the 
reproduction step). For each unique combination of input parameters (N
=4536), we ran 100 replicate simulations.
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    |  9SCHRAIDT et al.

here as the coefficient of determination; adjusted R2) between the 
empirical and predictive values, where a perfect fit would have a 
slope and R2 = 1 (Figure S5). To account for the possibility of non-
linear relationships, we also used Spearman's rank correlation co-
efficient, which returned nearly quantitatively identical results 
(Figure S6). To estimate the goodness of fit, we plotted the results 
of fitting a linear model to the predictive vs. empirical estimates for 
each set of parameters (averaged over 100 replicates) and plotted 
the mean correlation versus the mean slope across all unique com-
binations of parameter values. Parameter values resulting in high 
predictive power have correlation and slope values close to one and 
this approach allows us to isolate the effect of individual parameters 
against a background of thousands of different combinations of pa-
rameter values. For each parameter, we isolated the tested values 
(Table 3) that were in the top 20% of all simulations with respect to 
correlation and slope and calculated their relative contributions (e.g., 
predictive values generated with connectivity matrices from 2016 
resulted in many more predictions in the top 20% of all parameter 
values than those generated from 2014). Using more stringent cri-
teria (i.e., top 10% of all simulations) resulted in qualitatively similar 
results with more pronounced effects (i.e., larger effects of release 
year and week). We also combined slope and correlation estimates 
into a single goodness of fit metric (see SI Methods) to examine the 
contributions of specific weeks and years and to examine the re-
lationship between larval connectivity (measured as the number of 
grid regions with particles originating from region i, averaged for all 
values of i), larval retention (measured as the number of particles 
that originated and remained in region i, averaged for all values of 
i), and goodness of fit. Lastly, the percent of variation explained by 
each parameter was estimated as the correlation between a specific 
predictor and the goodness of fit between predictive and empirical 
FST. The eco- genetic model and all downstream analyses were writ-
ten in R version 4.0.2 (R Core Team, 2021).

3  |  RESULTS

3.1  |  Population genomics

All 959 individuals were sequenced, producing over 5 billion reads 
that resulted in an average of 5,463,100 paired- end reads per sam-
ple. Following filtering, 927 individuals from 26 collection sites (de-
lineated by site, year, and young- of- year vs. adult) were genotyped 
at 9302 loci (Table 1). Mean read depth of loci across individuals was 
29x, and mean missingness per individual was 7.6% (Figure S1). The 
estimates of global genetic diversity for heterozygosity and allelic 
richness were Ho = 0.246, He = 0.243, and Ar = 1.248, respectively. 
Genetic diversity estimates were also calculated for each popula-
tion (Table S2). An average of 36 loci (0.38%) were out of Hardy– 
Weinberg equilibrium (HWE) within each population (range = 0.01 
to 0.89%), while only a single locus was out of HWE across 70% or 
more of collection sites (≥18/26 collection sites). Thus, we retained 
all loci for downstream analyses.

Pairwise FST values ranged from −0.001 to 0.148 (Table S3) 
where mean pairwise FST was 0.003 among all main basin popula-
tions, 0.018 among all Green Bay populations, and 0.11 between the 
main basin and Green Bay populations. For STRUCTURE analysis 
across all collection sites, both mean likelihood values (L(K)) and ∆K 
suggested two optimal clusters (K = 2) (Figure 1; Figure S7). These 
results further suggest that some main basin individuals may have 
recent Green Bay ancestry and some Green Bay individuals have re-
cent main basin ancestry. When visualizing higher numbers of clus-
ters (e.g., K = 3, 4, and 8; Figure S8), we found that some of the Green 
Bay ancestry attributed to main basin individuals may represent 
subtle population structure among main basin populations. When 
visualizing all individuals with a PCA, we identified four main basin 
individuals that may have recent Green Bay ancestry (Figure 1b). 
Results from NewHybrids revealed that six out of 613 (1%) main 
basin individuals may have had recent admixture with individuals 
originating from Green Bay (Table S4). By contrast, 25 out of 314 
(7.9%) Green Bay individuals may have had recent admixture with 
individuals that originated from the main basin (Table S4). The ob-
servation that a slightly higher proportion of hybrids (13%) occurred 
in the two sites closest to the main basin further suggests that there 
may be some ongoing gene flow from main basin yellow perch into 
Green Bay. Nevertheless, the high FST values and discrete cluster-
ing reveal a distinct genetic split between Green Bay populations 
and main basin samples (Figure 1). The principal component analy-
sis for all individuals and principal coordinates analysis for pairwise 
FST values further supports this separation (Figures 1b and S9). For 
the PCA, there was substantially more variation among Green Bay 
individuals than all main basin individuals. When considering Green 
Bay samples on their own, STRUCTURE analysis revealed similar 
∆K values for K = 2 and K = 3; however, K = 3 appears to be better 
supported by the results from the principal coordinate and principal 
component analyses (Figure 2a– c and S10). These three groupings 
represent Little Bay de Noc, Big Bay de Noc, and Southern Green 
Bay (with Menominee mostly clustering with Southern Green Bay). 
When the main basin samples were run separately to determine 
fine- scale population structure, analysis revealed ∆K maxima at 
K = 2, but visualizing these clusters revealed only subtle population 
structure between the northern and southern sites (Figure 2d– f and 
S10). For Green Bay populations, there was a positive relationship 
between nearest along- shore distance and FST (p = 0.05, R2 = 0.29; 
Figure S11). For main basin populations, there was no relationship 
between nearest along- shore distance and FST (p = 0.36, R2 = 0.001; 
Figure S12) suggesting a need for additional approaches to explain 
patterns of genetic differentiation.

3.2  |  Biophysical and eco- genetic agent- based 
models in the main basin

For main basin populations, examining the relationship between the 
highest and lowest goodness of fit (i.e., slope and correlations clos-
est to one) between the current- derived, predictive FST values and 
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10  |    SCHRAIDT et al.

the genotype- derived, empirical FST values, we found that the best 
predictors of empirical FST occurred when there was high popula-
tion connectivity (Figure 3a; slope = 2.10, R2 = 0.31, p- value <0.001). 
The single best- fitting connectivity matrix also characterized a time 
period with high connectivity (Figure 3c,d). Conversely, the worst 
fit occurred when there was high larval retention, and low popu-
lation connectivity, resulting in model- based estimates of FST that 
were twice as high as those found empirically in the main basin 
(Figure 3e,f). Stated differently, when lake- wide currents resulted 
in high among- population connectivity, those matrices more accu-
rately predicted empirical FST. We also saw that lower larval reten-
tion resulted in better predictive ability, though this pattern was 
not as strong as connectivity (Figure S13; slope = −0.81, R2 = 0.04, 

p- value <0.001). When examining the relationship between connec-
tivity and the mean current strength, we found a positive relation-
ship (Figure S14), suggesting that periods of high connectivity were 
also defined by periods with stronger, more dispersive currents.

We next found that both the year and week that larvae were 
released were important drivers of predictive ability (Figures 4 and 
S15– S18). In particular, connectivity matrices from 2016 and the last 
week of June and first week of July, which resulted in high levels 
of connectivity (Figure S18), were strong predictors of empirical es-
timates of FST (Figure 4a,b) irrespective of other parameter values. 
Whether or not the connectivity matrices allowed for vertical, up-
ward swimming also had a large effect (Figure 4c), where allowing for 
upward vertical swimming resulted in poorer predictions. In general, 

F I G U R E  2  Patterns of genetic differentiation among yellow perch populations within each region of Lake Michigan. For Green Bay 
populations (red), principal coordinate analysis (PCoA) of pairwise FST values, where larger distances in two- dimensional space reflect higher 
pairwise FST values (a), STRUCTURE output for K = 3 (b), and principal component analyses (PCA) for individual genotypes (c) all reveal 
genetic differentiations between Big Bay de Noc (BDN; representing two life stages: young- of- year (BDNYO) and adults (BDN19), Little 
Bay de Noc (LBD; representing two life stages: young- of- year (LBDYO) and adults (LBD19), and southern Green Bay (SGB; representing 
adults from two separate collection sites (MEN and SGB) where SGB adults were sampled in two consecutive years). For the main basin 
populations, there is subtle population structure between northern (MAN, NUB, CHE, CHX, SUT, and NPT) and southern Lake Michigan 
collection sites as again determined by principal coordinate analysis of pairwise FST values (d), STRUCTURE output for K = 2 (e), and principal 
component analyses for all individual genotypes (f). Collection site information and IDs can be found in Table 1.
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    |  11SCHRAIDT et al.

F I G U R E  3  Relationships between predictive FST values among main basin Lake Michigan yellow perch populations obtained from our 
eco- genetic model parameterized with biophysical current data and empirical estimates of FST from 9302 SNPs. (a) Connectivity matrices 
(n = 216; Table 2) derived from our biophysical model that were characterized by higher population connectivity (x- axis) performed better 
at predicting (here measured as goodness of fit) our empirical estimates of FST, after passing through the eco- genetic model to generate 
predictive FST values, than connectivity matrices characterized by low population connectivity. (b) To track simulated particles in the 
biophysical models, Lake Michigan was divided into 40 roughly equally sized polygons. (c) The relationship between predictive FST and 
empirical FST for 10 replicated simulations for the connectivity matrix with the highest predictive ability. Each point represents a single 
pairwise FST comparison between two main basin sites estimated from a single simulation (x- axis) and from RAD- Seq data (y- axis). A 
perfect fit (i.e., perfect prediction) would result in all points laying directly on the 1:1 line (dashed line). (d) The corresponding connectivity 
matrix with the best predictive ability (used to create predictive FST values illustrated in panel c) occurred during a time period with high 
connectivity among neighboring sites. (e) The relationship between predictive FST and empirical FST for 10 replicated simulations for the 
connectivity matrix with the lowest predictive ability. Notice that many predictive pairwise comparisons had FST values 2– 3 times higher 
than those observed empirically. (f) The corresponding connectivity matrix, with low predictive ability, showed much lower connectivity 
among sites (inset illustrates color scale used in d and f where dark blue represents no connectivity between grid regions). For all scenarios, 
including those illustrated in panels c and e, predictive ability was assessed with 100 replicate simulations, but is illustrated here with 10 
replicate simulations for visual clarity. Note that while Green Bay was included in the biophysical model (grid regions 1– 3 in panel b and 
grids 1– 3 in panels d and f), it was not included in the eco- genetic models because the orders of magnitude higher FST made it challenging to 
resolve patterns among main basin populations.
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12  |    SCHRAIDT et al.

eco- genetic simulations parameterized with connectivity matrices 
from a 50- day PLD, versus a 30- day PLD had higher predictive value 
(Figure 4d). Varying the number of years that the eco- genetic model 

was run (50 vs. 100 vs. 200 years, Table 3), and thus the number 
of years of reproduction, mortality, and gene flow, had little effect 
on the goodness of fit between predictive and empirical values 

F I G U R E  4  Drivers of population connectivity and genetic differentiation in main basin Lake Michigan yellow perch. Points represent the 
average correlation (x axis) and slope (y axis) values between predictive (generated from the integrated biophysical eco- genetic model) and 
empirical FST for 100 simulations per unique set of parameter values (Table 3). A perfect fit between predictive and empirical values would 
lie on the 1:1 line (y = x) and would have a correlation and slope equal to one. Colors represent the effect of particular parameters (across 
all sets of parameter values) for the top 20% of correlation and slope estimates (see Figure S15 for full color). Insets illustrate the relative 
contributions of particular parameter values contributing to the top 20% of model predictions. Across all parameters, the specific year and 
week that particles were released in the biophysical model had high predictive ability (a, b), as did vertical swimming ability (c). Pelagic larval 
duration, the number of years that the eco- genetic model was run (“duration”), and the local population size had lower predictive ability (d– f).

F I G U R E  5  Relative contribution of dispersive currents and other drivers of genetic population connectivity in main basin yellow perch. (a) 
The effect of release year and week (across all sets of parameter values) for the top 20% of correlation and slope estimates illustrates that 
predictive values generated from connectivity matrices for specific weeks (especially those in 2016 and weeks 5 and 6) constituted a higher 
proportion of all integrated biophysical eco- genetic simulations and thus have high predictive ability. The connectivity matrices with high 
predictive ability reflect time periods with highly dispersive currents (see Figure 3; Figure S18). Conversely, certain weeks had low predictive 
ability that never appeared in the top 20% of estimates (e.g., 2014). Release weeks correspond to: 1 = last week of May, 2 = 1st week of 
June, 3 = 2nd week of June, 4 = 3rd week of June, 5 = 4th week of June, 6 = 1st week of July. (b) The percent of variance explained by model 
parameters. The specific release year and week explained most of the variation, followed by vertical swimming behavior (Swim), year alone 
(Year), and pelagic larval duration (PLD). The week of release alone (Week), local population size (N), and number of generations that the eco- 
genetic model was run (Gens) explained the least amount of variation.
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(Figure 4e). Lastly, increasing the local population size for each of the 
40 sites from 600 to 800 individuals improved predictive ability, but 
further increases in local population size had little effect (Figure 4e).

When we examined the joint effect of release year and week, we 
found that the specific week of release alone had the highest predic-
tive ability of any single parameter (Figure 5). In general, the connec-
tivity matrices from the 4th week of June and the 1st week of July 
2016 predicted the empirical estimates of genetic differentiation 
very well (Figure 5a, Figures S16– S18). Conversely, other weeks in 
different years (e.g., 2014) had very low predictive ability (Figure 5a, 
Figures S16– S18). This result was further confirmed with the com-
paratively low predictive ability of eco- genetic output from models 
which were parameterized each year by randomly selected connec-
tivity matrices across weeks and years (Figure S17). Thus, predictive 
FST values from models where different connectivity matrices were 
used in each year of the eco- genetic simulation (i.e., analogous to av-
eraging currents across broader windows of time) were, on average, 
worse at predicting empirical estimates of genetic differentiation.

When we examined the percentage of variation explained by all 
parameters included in the eco- genetic model, we found that the 
particular week of reproduction and ensuing larval dispersal (i.e., re-
lease date) explained the majority of differences in predictive ability 
(Figure 5b). Vertical swimming behavior, followed by year (i.e., ef-
fect of year without respect to week), was the next best predictor 
(Figure 5b). The length of the pelagic larval duration, the local popu-
lation size, and the number of years that the eco- genetic model was 
run for explained a much smaller percentage of the variation. Very 
long runs of the eco- genetic model (i.e., 1000 or 2000 years) also did 
not have a large effect (Figure S19). We also found that including the 
y- intercept when assessing the relationship between predictive and 
empirical FST (and not just the slope and correlation) did not assist 
with model evaluation (Figure S20). Lastly, we found that the em-
pirical pairwise main basin FST values were not influenced by outlier 
loci; there were very few loci with an FST value higher than 0.1 and 
removing the top 1% of FST values within each pairwise comparison 
had a minimal effect on the pairwise FST values (Figure S21).

4  |  DISCUSSION

For an aquatic species with a pelagic larval stage, we demonstrated 
that genetic differentiation across a 500 km latitudinal gradient is 
best predicted by strong and highly dispersive currents. Our results 
suggest that abiotic and biotic factors that increase dispersal dis-
tances (e.g., limited upward swimming, spawning at certain times of 
year) will favor population connectivity and contribute to observed 
population structure. More generally, the observation that genetic 
differentiation in large aquatic systems may best be determined by 
strong and highly dispersive currents has broad implications. First, 
many examinations of population connectivity rely solely on data 
from biophysical models and often average or integrate current data 
over lengthy periods of time (Selkoe et al., 2010). Here, we show that 
such analyses could be problematic because the realized population 

genetic connectivity may be best characterized by a small subset of 
possible connectivity matrices. Thus, parameterizing connectivity 
matrices for use in theoretical or demographic models of popula-
tion connectivity must be performed with caution. Second, the 
joint observations that (1) model runs employing multiple connec-
tivity matrices (randomly selected from multiple weeks and years; 
Figure S17) performed worse than those from single release dates, 
and (2) the number of years for which the eco- genetic model was 
run had almost no effect on predictive ability (e.g., Figures 4e and 
S19) suggest that even 6 years of biophysical data may not be suf-
ficient to fully characterize patterns of gene flow over evolutionary 
time scales. This result contrasts somewhat with recent studies (e.g., 
Legrand et al., 2022), which found that multigenerational coalescent 
models had high predictive value. Nevertheless, it was somewhat 
surprising to us that connectivity matrices based on current pat-
terns from a single release date had higher predictive ability than 
sets of all the connectivity matrices that captured all or a subset of 
the variability in the 6 years by varying connectivity matrices each 
year. This result is most parsimoniously explained by the possibil-
ity that the 6 years for which detailed biophysical data were avail-
able do not fully capture the variability found over evolutionary 
timescales. Thus, over longer time scales, it is more likely that the 
connectivity matrices were more similar to the individual matrices 
that were found to be good predictors of the empirical patterns of 
genetic differentiation and thus were characterized by strong cur-
rents. Although it is not statistically improbable that certain weeks 
would have higher predictive ability than others given the high in-
terweek variation in currents, it is highly unlikely that those same 
weeks would also happen be the weeks with the strongest currents 
(and highest connectivity; Figures 3e and S18). Lastly, we speculate 
that in highly dynamic systems, such as many marine and freshwater 
environments, if most population connectivity is driven by a small 
subset of possible connectivity matrices, then this result could ex-
plain, at least in part, many observations of chaotic genetic patchi-
ness (Broquet et al., 2013; Johnson & Black, 1982).

Bolstering our interpretation that strong and dispersive cur-
rents play a disproportionate role in determining patterns of pop-
ulation connectivity is the observation that 2015 and 2016 were 
particularly strong recruitment years for yellow perch in the main 
basin of Lake Michigan (Makauskas & Clapp, 2018). In turn, these 
year classes dominated the 2018 and 2019 perch population in the 
main basin (Makauskas & Clapp, 2018). Annual recruitment success 
of yellow perch in Lake Michigan and the entire Great Lakes re-
gion is positively related to spring– summer temperatures (Honsey 
et al., 2016). Of interest, 2016 (the year with best predictive abil-
ity) was particularly warm and 2014 (a year with very low predic-
tive ability) was particularly cold. Annual differences in temperature 
also influence when yellow perch spawn and hatch. For example, 
Withers et al. (2015) documented earlier peak catches of recently 
hatched larval yellow perch in southern Lake Michigan during 2010, 
a particularly warm year, than during 2011, an intermediate thermal 
year. Whether highly dispersive currents facilitate not only genetic 
population connectivity, but also recruitment, remains unknown as 
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does the interaction between temperature, currents, and recruit-
ment. This question could potentially be answered by an even sam-
pling of different age classes, especially young- of- year; however, 
we found it particularly challenging to collect younger age classes 
from the main basin due to their low abundance. The exact mech-
anisms by which climatic conditions lead to strong year classes are 
unknown. With water currents in Lake Michigan being primarily 
wind and temperature driven, it is likely that climate conditions that 
favor strong recruitment events also favor specific water current 
patterns (although it is unclear to what extent the realized water 
current patterns drive recruitment success). We illustrate here that 
there are specific water current patterns (including periods of highly 
dispersive currents) that are consistent with observed connectivity 
patterns. These influential connectivity patterns may have been ob-
served repeatedly over time and overlapped with periods of strong 
recruitment success. Nevertheless, more work is needed to explore 
variation in yellow perch spawn timing, population connectivity, and 
subsequent recruitment.

Here, we integrated biophysical and eco- genetic, agent- based 
modeling to better understand the drivers of population connec-
tivity in aquatic systems. This approach could be improved with 
higher- resolution oceanographic data, both in space and time. At 
least some of the unexplained variation between model- derived and 
empirical estimates of genetic differentiation could be due to a lack 
of resolution in the biophysical model, particularly with respect to 
nearshore currents (Gawarkiewicz et al., 2007; Swearer et al., 2019). 
Furthermore, accurate estimates of local population sizes combined 
with accurate estimates of fecundity could improve both the biophys-
ical model, in terms of more accurately determining the number of 
particles to release at each site, and the eco- genetic model, in terms 
of accurately simulating gene flow and genetic drift. Releasing larger 
numbers of larvae per node and incorporating additional aspects of 
larval behavior such as horizontal swimming, particularly as yellow 
perch are strong swimmers toward the end of their PLD, could also 
help to improve the biophysical model (Kingsford et al., 2002; Leis & 
McCormick, 2002). An alternative approach would be to simulate de 
novo (i.e., without using the biophysical model) a wide range of con-
nectivity matrices and determine which set had the best predictive 
ability; however, the de novo creation of connectivity matrices may 
generate connectivity matrices that have very high predictive power, 
but that were unlikely to ever occur in reality. Likewise, estimating 
larval mortality, settlement competency, and settlement probability 
relative to habitat availability could yield additional improvements. 
Additional data on spawning times and locations (i.e., yellow perch 
may spawn in southern Lake Michigan earlier than yellow perch in 
northern Lake Michigan) may also bolster the ability to explain em-
pirical patterns of genetic differentiation. Improving the eco- genetic 
model to incorporate site- specific demography and adult movement 
data, along with additional evolutionary forces such as mutation and 
selection, could also yield improvements. Moreover, whole- genome 
sequencing may allow for more accurate estimates of genetic dif-
ferentiation, more precise demographic reconstruction, and the 
identification of putatively adaptive loci that could explain regional 

responses to selection in different environments. In short, any ap-
proaches that remove uncertainty in parameter estimates are likely 
to yield gains in prediction accuracy and aid in disentangling the 
relative contributions for drivers of population connectivity. Lastly, 
there may be better approaches for deciding which eco- genetic 
models have the highest predictive ability. Nevertheless, distilling 
model evaluation into two parameters (slope and correlation) does 
have its advantages. For example, in Figure 4, we found that some 
predictive estimates do have slopes that are close to 1, meaning that 
some models are not systematically over or underestimating gene 
flow or genetic drift. However, the maximum correlation estimates 
illustrated in Figure 4 only approach 0.5, which suggests that there 
is either room for improvements to the models themselves or that 
there is some inherent stochasticity in high gene flow systems that 
may never be fully predicted.

At a regional level, we found that Green Bay was highly genet-
ically differentiated from the main basin (mean FST = 0.11), which 
further highlights the importance of managing Green Bay and main 
basin yellow perch as distinct stocks. This confirmation of previ-
ous work by Miller (2003) is most likely driven by the relatively low 
rates of water exchanged between Green Bay and the main basin 
(Beletsky & Schwab, 2001), but other factors such as differences 
in reproductive traits (e.g., spawn timing) or local adaptation (e.g., 
differential selection after dispersal) may be further contributing to 
reduced gene flow between Green Bay and the main basin. Tagging 
studies suggest that there is limited movement of adult yellow perch 
between Green Bay and the main basin. Glover et al. (2008) tagged 
63,948 yellow perch in Green Bay and the main basin and recaptured 
3801 of these tagged fish. Of these recaptured fish, they found 0 in-
dividuals that moved between Green Bay and main basin. This study 
and others demonstrate that adult yellow perch generally do not 
move very far and is again suggestive that spatial connectivity is pri-
marily driven by larval transport. Other studies have also suggested 
that limited water exchange is a barrier to gene flow between Green 
Bay and the main basin (e.g., Miller, 2003) and measurements and 
simulation models also demonstrate limited water exchange. Our re-
sults from NewHybrids suggest that there are greater levels of gene 
flow into Green Bay from the main basin than gene flow out of Green 
Bay into the main basin (Table S4). If this result is correct, it may be 
driven either by larval dispersal or by adult main basin yellow perch 
migrating into Green Bay— a pattern sometimes seen in drowned 
river mouth lakes (Chorak et al., 2019). Another possibility is that 
moderate genetic divergence among Green Bay collection sites is in-
creasing the “hybridization rate” within Green Bay sites themselves. 
Within Green Bay itself, moderate spatial population structure was 
evident (FST = 0.018). Thus, for management purposes it may be 
appropriate to consider separate management strategies for perch 
from different regions of Green Bay (e.g., northern Green Bay versus 
southern green Bay). We also documented subtle population struc-
ture within the main basin itself (Figure 2d,e) where northern and 
southern sites tend to cluster apart from each other. The genetic dif-
ferences within the main basin, however, are much more comparable 
to marine systems, with mean pairwise FST equal to 0.003. Of note, 
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yellow perch populations from Traverse Bay were much more similar 
to main basin yellow perch populations than Green Bay yellow perch 
were to main basin populations. This result suggests that the local, 
and perhaps fine- scale, currents within Traverse Bay result in more 
connectivity with the main basin of Lake Michigan than is currently 
appreciated. From a population genetic perspective, it is interest-
ing that Green Bay yellow perch show characteristics in common 
with fishes that lack a pelagic larval stage (higher FST; isolation- 
by- distance; Figure S11), while main basin perch show patterns of 
genetic differentiation similar to many marine fishes (lower FST; no 
pattern of isolation- by- distance Figure S12) (Martinez et al., 2018). 
Our three young- of- year samples each showed patterns of ancestry 
similar to their nearby adult samples (Figure 2, most easily seen in 
STRUCTURE plots), suggesting that high variance in reproductive 
success is not driving patterns of genetic differentiation in this sys-
tem (cf. Christie, Johnson, et al., 2010, Christie, Tissot, et al., 2010), 
but more samples of fish across different age classes are needed.

In conclusion, we found that populations of an ecologically and 
commercially important fish with a 40- day pelagic larval stage are 
connected by highly dispersive currents. Identifying the character-
istics of currents that drive population connectivity can allow for 
better conservation and management decisions such as identify-
ing the appropriate size and spacing of protected areas (Baetscher 
et al., 2019; Carr et al., 2017) or determining the boundaries of 
populations and management units (Waples & Gaggiotti, 2006). 
Spatial components of the main basin Lake Michigan yellow 
perch stock have clearly been overharvested in the past (Wilberg 
et al., 2005). However, indices of overharvest (e.g., skewed sex 
ratios, altered maturation schedules) recovered rapidly with relax-
ation of fishing pressure, potentially due to mixing of yellow perch 
from other regions of the main basin (Feiner et al., 2015; Lauer 
et al., 2008). Thus, maintaining such connectivity is likely import-
ant for the resiliency of the overall stock. Moreover, knowing 
which connectivity matrices have the best predictive ability has 
utility for researchers and managers. For example, if researchers 
would like to model metapopulation dynamics to attempt to pre-
dict patterns of recruitment, understand where to best place pro-
tected areas, or model responses to fisheries- induced evolution, 
they now know which set of connectivity matrices best predicts 
the observed empirical patterns of genetic differentiation among 
populations. Future studies may further explore annual variation 
in source– sink dynamics of yellow perch in Lake Michigan to de-
termine which locations may be particularly important to protect 
as contributors of recruits. Scaling up these analyses to multiple 
species within a community could not only allow for greater gen-
eralizations, but could also identify the drivers, and their relative 
contributions, of population and community connectivity within 
and among aquatic systems.
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